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SUMMARY

An incompressible Navier–Stokes solver using curvilinear body-�tted collocated grid has been devel-
oped to solve uncon�ned �ow past arbitrary two-dimensional body geometries. In this solver, the full
Navier–Stokes equations have been solved numerically in the physical plane itself without using any
transformation to the computational plane. For the proper coupling of pressure and velocity �eld on
collocated grid, a new scheme, designated ‘consistent �ux reconstruction’ (CFR) scheme, has been
developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the mo-
mentum equations at the centre of the cell faces. The velocities at the cell centres are also updated
explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit
treatment considerable simpli�cation has been achieved compared to earlier approaches. In the present
investigation the solver has been applied to uncon�ned �ow past a square cylinder at zero and non-zero
incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained
with results available from literature. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Staggered grid was widely used in the early Navier–Stokes solvers, particularly for solving
�ow problems on a Cartesian coordinate system [1–3]. Use of staggered grid provides a strong
pressure–velocity coupling that is automatically achieved by virtue of the location of the var-
ious variables in the cell and thereby avoids the occurrence of odd–even pressure oscillations
that often occur in collocated grid arrangements. However, in the recent times numerous
researchers have introduced explicit or implicit arti�cial di�usion in collocated grid-based
schemes for e�ective coupling of the governing equations and achieved satisfactory solution.
Sotiropoulos and Abdallah [4] report the development of a coupled fully implicit scheme
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for solving steady incompressible Navier–Stokes equations on a collocated grid in which
the momentum equations are coupled with a pressure Poisson equation. No explicit arti�cial
di�usion has been used in the scheme, but the pressure equation introduces dissipative terms
that are second-order spatial derivatives of pressure into the governing equations. Fourth-order
arti�cial di�usion terms need to be incorporated to eliminate the odd–even spurious pressure
oscillations on a collocated grid when the governing equations are solved in a coupled manner
[5]. de Foy and Dawes [6] have developed a �nite volume incompressible �ow solver for
three-dimensional unsteady �ows based on an unstructured tetrahedral mesh with collocation
of the �ow variables at the cell vertices. The authors use arti�cial dissipation in solving the
momentum equations and pressure correction step to prevent the formation of instabilities. Kim
and Moin [7] point out that instabilities, which occur especially at high Reynolds numbers
can be handled and a stable solution can be produced by explicit or implicit introduction of
arti�cial di�usion.
In spite of the strong pressure–velocity coupling available on staggered grid, it is problem-

atic for calculating �ow problems on general curvilinear coordinate system since the solution
process is not carried out in the physical plane but in the transformed plane. In such an
approach, where both independent and dependent variables are transformed from the Carte-
sian form of the equations, the curvature of the coordinate lines occurs through the so-called
Christo�el symbols in the momentum equations. This results in a source term that blends
the physics of the �ow with the geometry of the grid and makes the momentum equations
non-conservative [8, 9]. Moreover, the transformed equations are very complex, because of
the associated contravariant and covariant velocity components and accurate calculation of the
higher-order derivatives involved in the Christo�el symbols is di�cult. Also, such systems
su�er from uncontrolled intrinsic numerical di�usion in a decoupled approach.
To circumvent this problem, attempts have been made in the last two decades to develop

Navier–Stokes solvers for incompressible �ow calculations using collocated grid in curvi-
linear coordinate systems. In this approach the Cartesian velocity components are retained
in the Navier–Stokes equations and the problem is solved in the physical plane. However,
in collocated grid the mass �uxes involved in the integral form of the continuity equation
are not available as dependent variables, and consequently, they must be interpolated. This
interpolation should be carried out by a suitable �ux reconstruction scheme. If the �ow vari-
ables at the cell faces are approximated by a simple linear interpolation of adjoining nodal
values, problem arises from the development of spurious pressure modes and odd–even decou-
pling. In order to ensure a strong coupling between the velocity and pressure �elds, a better
(i.e. physically consistent interpolation) scheme needs to be used.
A major breakthrough in this respect has been made by Rhie and Chow [10] in their

physical interpolation approach (PIA). A �ux reconstruction expression at the cell face that
replicates a momentum equation was developed by them. In their approach, the pressure
gradient is discretized at the cell face while the remaining terms in the momentum equations
are interpolated. This �ux reconstruction approach uses a 9-point stencil for the pressure terms
and 21-point stencil for the cell face velocity calculations. The resulting reconstructed �ux is
used only in the continuity equation to prevent the occurrence of spurious pressure modes.
The reconstructed �ux has not been used in the momentum equations. To ensure stability, the
hybrid scheme is used to discretize the momentum equations. Matrix inversion has been used
at both the steps, i.e. for cell face �ux reconstruction and solution of momentum equations,
and thereby makes the scheme (implicit–implicit) somewhat complex. However, most authors
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working with the collocated grid arrangements have used this method of pressure–velocity
coupling during the last two decades.
Schneider and Raw [11] deduced the �ux reconstruction formulae for the cell face variables

from the discretized form of the momentum equations and these were used in the continuity
as well as the momentum equations to update the �ow variables. A control volume node-
centred �nite element method has been used in this method. Matrix inversion has been used
for solving both the steps, making this an implicit–implicit scheme. However, this PIA has
an advantage of using a compact 9-point stencil for both pressure and cell face velocity
calculations. The method su�ers from some accuracy problem for the di�usive terms as pointed
out by Deng et al. [12].
Utilizing the idea of Schneider and Raw [11], Deng et al. [12] devised a consistent physical

interpolation (CPI) approach by considering a compact 9-point stencil closure for the pressure
as well as the cell face velocities. This approach determines the cell face variables by an
explicit manner, thereby circumventing the problem of matrix inversion of Rhie and Chow [10]
and Schneider and Raw [11] for solving the cell face velocities and also overcomes the
accuracy problem of Schneider and Raw [11] scheme. However, Deng et al. [12] used the
explicit scheme only to calculate the cell face velocities whereas the �ow variables at the cell
centres were updated by using an implicit scheme (explicit–implicit scheme).
Considerable bene�ts can be achieved by developing a method in which calculation of both

cell face velocities and the �ow variables at the cell centres are carried out in a fully explicit
(explicit–explicit) manner. An attempt to develop such a fully explicit method is presented
here.
In the present solver, a fully explicit scheme is adopted for the calculation of both cell face

velocities and the �ow variables at the cell centres. For the calculation of cell face velocities
a ‘consistent �ux reconstruction’ (CFR) technique has been formulated which is based on
solving the momentum equations at each cell face explicitly. The �ux reconstruction cell on
a face of the control volume is placed centrally between the two cells that share that face.
If the grid gets stretched near a sharp corner, there is provision in the grid generation code
to cluster and smooth the grid in that location such that the discretization error in the �ux
reconstruction step is minimized. Two pressure nodes are located at two opposite faces of
the �ux reconstruction cell. A 9-point stencil is used for the pressure equation and a 13-
point stencil for the velocity calculations. A discrete pressure Poisson equation is obtained
by substituting the reconstructed cell face velocities in the discrete continuity equation. The
pressure Poisson equation is solved iteratively using successive over-relaxation scheme. The
reconstructed cell face �ux is substituted in both the continuity and momentum equations.
For updating the �ow variables at the cell centres, the momentum equations are solved in an
explicit manner in contrast to the implicit scheme of Deng et al. [12].
The present solver, developed on the basis of CFR scheme, is capable of calculating un-

con�ned �ow past any arbitrary two-dimensional body geometry. In the present investigation,
uncon�ned �ow past a square cylinder has been computed over a range of Reynolds number
for angles of incidence varying from 0 to 45◦.

2. GOVERNING EQUATIONS

The equations governing the incompressible viscous �uid �ow in two dimensions are the
equation of continuity and the two components of the momentum equation. In absence of body

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:297–319



300 A. ROY AND G. BANDYOPADHYAY

forces and heat transfer, these equations can be expressed in the non-dimensional primitive
variable form as follows:

Continuity equation:
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where the velocity components u and v are along the coordinate directions x and y, respec-
tively, p is ratio of pressure and density, and Re is the Reynolds number.

3. FINITE VOLUME DISCRETIZATION OF GOVERNING EQUATIONS

To obtain a numerical solution, the governing �ow equations are discretized by a �nite volume
technique based on the integral form of the equations to be solved. The physical region, in
which the equations are solved, is divided into elementary quadrilateral cells within which the
integration is performed. Such a procedure allows one to deal with complicated geometries
without considering the equations written in curvilinear coordinates. This also preserves the
properties of conservation. Only the coordinates of the corners of the cells are necessary and
curvilinear coordinates, not necessarily orthogonal, can be used to de�ne the set of cells.
In the present investigation a structured O-grid comprising of quadrilateral cells is generated
using Laplace equation.
For an arbitrary quadrilateral cell ‘P’ as shown in Figure 1, Equations (1)–(3) can be

written in integral form as

Continuity equation:
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Figure 1. Grid arrangement showing the quadrilateral collocated main control volumes.

y-momentum:
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where � represents a two-dimensional �ow domain. Applying Green’s theorem to Equations
(4)–(6) for any cell ‘P’ yields:

Continuity equation:

∫∫
�
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Momentum equations:

unsteady term:
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convective terms:
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where ue, ve, un, vn, uw, vw, us and vs are the cell face centre velocities and pe, pn, pw and
ps are the cell face centre pressures on east, north, west and south faces, respectively, � is
the convective �ux term and is equal to u and v along x and y directions, respectively, and
(1=Re)× (@�=@x) and (1=Re)× (@�=@y) are the cell face centre di�usive �uxes. The values
of the velocity derivatives are obtained by using Taylor series expansion about the cell face
centre points [13]. For example, the velocity derivatives on the east face of the cell ‘P’ can
be expressed as follows:

(
@�
@x

)
e
=
(�E − �P)×�y43 − (�3 − �4)×�yPE

�xPE ×�y43 −�x43 ×�yPE (9a)

(
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@y

)
e
=− (�E − �P)×�x43 − (�3 − �4)×�xPE

�xPE ×�y43 −�x43 ×�yPE (9b)

� is the spacing operator, e.g. �x12 = x2−x1. ‘C’ is the contour of the cell ‘P’ and O(|r12|3; : : :)
is the Newton–Cotes integration error [13].
In Equation (8a), the transient term is approximated using the ‘lumped mass’ approach,

[11, 14]. In this equation the superscript of � stands for the particular time step, namely
nth or (n + 1)th. �t is the time interval. aP represents the area of the cell P. The value of
the variable at the cell centre, namely uP, is used as the representative value for the entire
cell for evaluating the transient term. The explicit Forward Euler method has been used for
discretizing the time derivative that is �rst-order accurate in time.

4. CONSISTENT FLUX RECONSTRUCTION SCHEME

Based on the above �nite volume discretization of the governing equations, an explicit two-
dimensional solver has been developed. The solver makes use of collocated grid arrangement
where the �ow variables u, v and p share the same location at the centre of the cells. For
the calculation of convective and pressure �uxes through the cell faces, the unknown values
(i.e. ue, ve, un, vn, uw, vw, us, vs, pe, pn, pw and ps) at the centre of the cell faces need to
be evaluated.
The cell face centre velocities are obtained by using a CFR scheme, which has been

developed in the present investigation. The present approach involves the solution of x and y
components of the momentum equations at the centre of the cell faces of each cell. This
provides the solution for the required cell face centre velocities ue, ve, un, vn, uw, vw, us
and vs for �ux calculation. These values are then substituted into the discrete continuity
equation to obtain the discrete Poisson equation for pressure. In order to maintain the ac-
curacy of the �nite volume discretization, the cell face velocities are approximated by a
second-order accurate closure method. The cell face centre pressures are obtained by lin-
early interpolating the cell centre pressure values calculated by solving the pressure Poisson
equation.
When the cell face velocities are obtained by linear interpolation, the cell face velocity,

e.g. ue, on the east face, comes as a function of the cell centre values of the u-velocity
component of the concerned cell and its neighbours, but is independent of the corresponding
v-velocity component and pressure. Although upwind interpolation schemes can be used to
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Figure 2. Grid arrangements showing the control volumes for calculation of cell face
velocities at the east (e) and west (w) faces.

circumvent the numerical instability problems, spurious pressure modes exist when such linear
interpolation formulae are implemented on collocated grids.
One of the most e�ective means to overcome this di�culty is to use a physically consistent

�ux reconstruction approach by which the cell face velocities are expressed not only in terms
of the dependent variable u, in this case, but also other physical quantities v and p.
In the present solver, a fully explicit scheme is adopted for the reconstruction of cell face

velocities as well as for updating the �ow variables at the cell centres. A 9-point stencil is used
for the pressure equation and a 13-point stencil for the velocity calculations. For calculating
the viscous �uxes on the east face of ‘e’ cell (�ux reconstruction cell centred about ‘e’,
Figure 2), for example, the values of velocities at points ‘e’, ‘en’, ‘ee’ and ‘es’ are necessary.
The value of the velocity component at ‘ee’ is obtained by linear interpolation of the cell
centre velocity at E and the cell centre velocity of the cell located on the east of cell ‘E’, i.e.
the cell ‘EE’ (Figure 2). In this manner the cell ‘EE’ gets included in the stencil for velocity
calculation. In a similar manner, the cells located north of cell ‘N’ (‘NN’), west of cell ‘W’
(‘WW’) and south of cell ‘S’ (‘SS’) also get included in the stencil. Therefore, the stencil
�nally includes 13 cells, namely, ‘P’, ‘E’, ‘NE’, ‘N’, ‘NW’, ‘W’, ‘SW’, ‘S’, ‘SE’ and the
four additional cells mentioned above, namely, ‘EE’, ‘NN’, ‘WW’ and ‘SS’. For updating the
�ow variables at the cell centres, the momentum equations are solved in an explicit manner
in contrast to the implicit scheme of Deng et al. [12]. The layout of the �ux reconstruction
cells used in the present solver is di�erent from that of Deng et al. [12]. For example, the
‘e’ cell includes the points ‘E’, ‘3’, ‘P’ and ‘4’ at the cell face centres, which is di�erent
from the corresponding cell of Deng et al. [12].
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Figure 3. Grid arrangements showing the control volumes for calculation of cell face
velocities at the north (n) and south (s) faces.

The closures for the cell face velocities ue, ve, un, vn, uw, vw, us and vs are derived by
writing the discretized u and v components of the momentum equations at the points ‘e’, ‘n’,
‘w’ and ‘s’, respectively (Figures 2 and 3). The �nite volume schemes used at these points
are similar to that used at point ‘P’. The discretization of the various terms are given as
follows:
unsteady term:
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e
d�e =
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× u4 ×�xs;es + O(|r12|3; : : :)= UCFLUXe (10b)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:297–319



306 A. ROY AND G. BANDYOPADHYAY

pressure term:
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In Equation (10a), the ‘lumped mass’ approach has been applied to the �ux reconstruction
cell on the east face of the cell P. The area of the reconstruction cell is half the sum of the
areas of cells P and E. The value of the variable at the reconstruction cell centre, namely ue, is
used as the representative value for the entire reconstruction cell for evaluating the transient
term. �e is the domain of the ‘e’ cell and Ce is the contour enclosing it. The values of
properties at the various nodal points like 1, 2, 3, 4, etc., are obtained by linear interpolation
of neighbouring cell centre property values. For example, the equation used for evaluating the
value of the property at point 1 is given as follows:

�1 =
(aW + aP)2 × (aSW�S + aS�SW) + (aSW + aS)2 × (aW�P + aP�W)

(aSW + aS)× (aW + aP)× (aW + aP + aS + aSW) (11)

The above expression is obtained by �rst calculating the values of the property at ‘w’ and
‘sw’ points by linear interpolation from neighbouring cell centre values and then again linearly
interpolating these values to obtain the value of the property at point ‘1’. The �rst-order
velocity derivatives (@�=@x) and (@�=@y) at points E, 3, P and 4 are obtained using Taylor
series expansion. For example, the velocity derivatives at point ‘E’ are given as follows:

(
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E
=
(�ee − �e)×�yes;en − (�en − �es)×�ye;ee

�xe;ee ×�yes;en −�xes;en ×�ye;ee (12a)
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The velocity derivatives at the other integration points and on other faces (n, w and s) are
calculated using similar formulae. The closure interpolation formula for ue can be derived
from the substitution of Equations (10a)–(10d) into Equation (5). The resulting expression
for ue at the (n+ 1)th time level is

un+1e = une +
1

0:5× (aP + aE) × (−UCFLUXe− UPFLUXe + UDFLUXe)×�t (13)

The cell face velocity at nth time level i.e. une is taken as the linear interpolation of the
adjoining nodal values at that time level. In a similar manner Equations (5) and (6) are
solved to obtain the �ux closure relationships for ve, un, vn, uw, vw, us and vs, respectively,
at the (n+ 1)th time level.
At the body boundary cells no velocity reconstruction is necessary on the south face

because no-slip velocity boundary condition is applied. For reconstruction on the east and
west cell faces, the calculations are done with due care by enforcing no slip at all the nodal
points which lie on the body boundary, namely, ‘ws’, ‘1’, ‘s’, ‘4’ and ‘es’. The value of
pressure at all the body boundary points are obtained from the neighbouring �ow �eld points
by applying the zero normal pressure gradient condition. The velocity derivatives on the body
boundary are calculated by assuming a layer of ghost cells below the body (re�ection prin-
ciple), where the properties at each node of a ghost cell are equal in magnitude but opposite
in sign to the corresponding nodal value of the body boundary cell. At the outer boundary,
solution of the discretized �ux reconstruction equations are obtained up to the (N −1)th cells.
At the north face of these (N −1)th cells, �ux reconstruction is performed on the basis of the
last time step values available at the cell centres of the N th cells, if it is the outlet boundary,
or on the basis of the free stream values if it is the inlet boundary. A similar approach as
explained above is followed for solving the momentum and pressure equations at the body
boundary and outer boundary.

5. THE PRESSURE POISSON EQUATION

The equation for pressure is derived by substituting the expressions for un+1e , vn+1e , un+1n , vn+1n ,
un+1w , vn+1w , un+1s and vn+1s into the discrete continuity equation (Equation (7)). The following
pressure Poisson equation is obtained with pressure as unknown:

pP =
1
CP

× [SOURCE− CE ×pE − CN ×pN − CW ×pW − CS ×pS

−CNE ×pNE − CSE ×pSE − CNW ×pNW − CSW ×pSW] (14)

where the coe�cients CE, CN, CW, CS, CNE, CSE, CNW and CSW are the geometrical parameters
of the cell and SOURCE is the total source term comprising of the cell divergence at the nth
time level, Dn

i;j, and the convective and di�usive �uxes at the cell faces. The term SOURCE
is an explicit function of the nodal variables ui;j and vi;j which include the concerned cell and
its eight neighbours as given below.

SOURCE= (ue ×�y43 + un ×�y32 + uw ×�y21 + us ×�y14
− ve ×�x43 − vn ×�x32 − vw ×�x21 − vs ×�x14)n=�t
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+
(
UCFLUXe +

1
Re

×UDFLUXe
)

× �y43
ae

+
(
UCFLUXn +

1
Re

×UDFLUXn
)

× �y32
an

+
(
UCFLUXw +

1
Re

× UDFLUXw
)

× �y21
aw

+
(
UCFLUXs +

1
Re

×UDFLUXs
)

× �y14
as

−
(
VCFLUXe +

1
Re

×VDFLUXe
)

× �x43
ae

−
(
VCFLUXn +

1
Re

×VDFLUXn
)

× �x32
an

−
(
VCFLUXw +

1
Re

×VDFLUXw
)

× �x21
aw

−
(
VCFLUXs +

1
Re

×VDFLUXs
)

× �x14
as

(15)

where expressions for UCFLUXe and UDFLUXe are provided in Equations (10b) and (10d),
respectively. The expressions for the remaining �ux terms are similarly obtained from the
other cell face centres.
Equation (14) is used directly as the pressure equation in a decoupled approach to determine

the pressure �eld in various cells. It involves nine neighbouring nodes NE, E, SE, N, P, S,
NW, W and SW. In case of Cartesian coordinates, the Pressure equation involves only �ve
nodes E, N, W, S and P.
For the cells near the body boundary, the expression for the pressure equation is obtained

by applying the zero velocity boundary condition in the discretized continuity equation. Zero
normal pressure gradient across the body boundary is applied in Equation (14). Pressure on
the body boundary is obtained by using the Neumann boundary condition and special care is
taken to satisfy the compatibility condition [15, 16] in the discretized pressure Poisson equation
for such cells. Satisfaction of the compatibility condition ensures that there is zero net source
term when the discretized equations over the entire computational domain are considered.
Dirichlet boundary condition of free-stream pressure has been applied in the inlet portion of

the outer boundary of the domain. At the outlet portion of the outer boundary, the traction-free
condition proposed by Gresho [17] has been applied, which provides the following condition
for the dimensional pressure:

poutlet = 2�
(
@un
@n

)
(16)

where ‘n’ is the local normal direction to the boundary and ‘un’ is the normal component
of the total velocity at the outlet boundary. This boundary condition allows for the pressure
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wave propagation. It is interesting to note that for simulation of two-dimensional uncon�ned
�ow past square and rectangular cylinder, Tamura and Kuwahara [18] and Tamura et al. [19]
have used the Dirichlet boundary condition of free-stream pressure at the outer boundary of
the domain.
The iterative method using successive over-relaxation has been used to solve the pressure

Poisson equation [20]. In the present computation a value of 1.5 has been used as the over-
relaxation factor. Once the pressure Poisson equation is solved, the cell centre pressure values
are available. The cell face centre pressures are obtained by linear interpolation of adjacent
cell centre values. For example, the east cell face centre pressure is obtained as

pe =
pE × aP + pP × aE

aP + aE
(17)

6. RECONSTRUCTION OF CELL CENTRE MOMENTUM EQUATIONS

The reconstructed cell centre momentum equations are obtained by substituting the values of
velocity derivatives at cell face centres, interpolated cell face centre pressures, and the values
of the cell face centre velocities obtained by the CFR approach formulated in the present
investigation into the discretized momentum equations. From these equations, the velocities
at the cell centres are calculated and updated in time explicitly.

7. INITIAL CONDITION

The governing equations for viscous incompressible �ow are mixed parabolic–elliptic in na-
ture. The equations are parabolic with respect to time and elliptic with respect to space. This
means that the solution marches forward in time due to the parabolic behaviour and distur-
bances may travel along any direction, upstream or downstream due to the elliptic behaviour.
Therefore, initial conditions need to be set at the beginning of the solution and boundary
conditions surrounding the domain should be speci�ed.
In the beginning of the solution process, uniform free-stream velocity and pressure �eld are

prescribed in each cell of the �ow domain as given below.

u(i; j)= u∞=U∞ × cos �

v(i; j)= v∞=U∞ × sin �

p(i; j)=p∞

⎫⎪⎪⎬
⎪⎪⎭

for all 16 i6M; 16 j6N (18)

This physically means that the body is suddenly introduced into a uniform free-stream �ow.
The �ow domain has been discretized using M ×N cells (M cells along �g and N cells
along �g, where �g and �g are the grid-aligned coordinates in the circumferential and radial
directions). Angle of incidence is given by �. Free stream �ow parameters are indicated by
su�x ∞.

8. BOUNDARY CONDITIONS

For the O-grid system, only two boundaries exist: inlet (upstream) and outlet (downstream).
Both the inlet and the outlet boundaries are kept far away from the body surface, at a distance
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of 26B. At the inlet, the streamwise velocity component is assigned as that of the free stream
and at the outlet boundary, both transverse and the streamwise components are obtained by
applying the continuity boundary condition. On the body surface, no-slip condition is applied.
Numerical simulations of Sohankar et al. [21] reveal that when solving uncon�ned �ow

past a body, if the outer boundary of the computational domain is placed at a minimum
distance of 26 times the chord of the body, it has no profound e�ect on the �ow �eld in the
immediate vicinity of the body. The far �eld is located a long distance away to minimize the
chances of waves re�ecting back from the outlet boundary and to ensure minimum distortion
of the velocity �eld as it leaves the boundary. Non-re�ecting or open boundary conditions can
reduce such re�ections, though implementing them in the numerical scheme would be more
involved. The pioneering work in that direction has been reported by Orlanski [22]. Some
other researchers who have developed such open boundary conditions in the recent times are
Bruneau and Fabrie [23] and Hasan et al. [24]. Sohankar et al. [21] have investigated the
e�ects of various outlet boundary conditions on the solution while solving uncon�ned �ow
past a square cylinder.

9. NUMERICAL STABILITY CRITERIA

The stability of an explicit numerical scheme is mainly dependent on the time step employed
in the calculation procedure. Because of the explicit scheme, this time step is highly re-
stricted to obtain a stable and accurate solution. In the present computation, this time step is
obtained by taking the contribution of the inviscid and viscous �uxes separately. The contri-
bution of the inviscid �uxes to the time step is usually restricted by the local CFL criterion
which allows the �uid to traverse only one cell at one time step. To account for the viscous
e�ects, this time step has been suitably modi�ed. However, rigorous stability analysis of the
discretized equations on curvilinear coordinates has not been performed to �nd out the exact
contributions.
Let V�g and V�g be the components of the velocity vector along the two grid-aligned

directions. These velocity components are obtained by taking a dot product of the cell centre
velocity vector and unit vectors along �g and �g directions. Then by CFL criteria

�t¡min
{
��g
|V�g |

;
��g
|V�g |

}
(19a)

where ��g and ��g are the extents of a cell along �g and �g directions, respectively.
Sotiropoulos and Abdallah [4], Hwang and Sue [25] and several other researchers have used
such CFL-number-based time step calculation in various incompressible Navier–Stokes solvers.
The minimum time step by considering the viscous e�ects is calculated as follows:

�t=
0:5×Re{
1

(��g)2
+

1
(��g)2

} (19b)

The lowest �t as evaluated from Equations (19a) and (19b) is obtained for all cells of the
�eld. For the computational purposes, only a fraction of the smallest time step of all the grid
cells is considered to ensure stability of the solution.
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10. SUMMARY OF STEPS IN A CALCULATION CYCLE

The various steps involved in the present computation can be summarized as follows:

(1) The velocity and the pressure �eld un, vn and pn are initialized. This is done either
from the result of previous cycle or from the prescribed initial conditions.

(2) The cell face velocities un+1e , vn+1e , un+1n , vn+1n , un+1w , vn+1w , un+1s and vn+1s at (n+ 1)th
time level are obtained by solving the x- and y-components of the momentum equations
at the centre of the cell faces in terms of nth time level cell-centred velocity and
pressure �elds un, vn and pn using the proposed CFR scheme.

(3) The discrete pressure Poisson equation is obtained by substituting the expressions of
reconstructed cell face centre velocities in the discrete continuity equation. The discrete
pressure Poisson equation is then solved to obtain the pressure �eld pn+1 using the
velocity �eld un, vn of nth time level.

(4) The discrete cell centre momentum equations are then solved to update the cell centre
velocity components un+1, vn+1 at the new time level (n + 1) in an explicit manner
using the reconstructed cell face centre velocities and the pressure pn+1 obtained from
the pressure equation.

This completes the necessary calculations for advancing the �ow �eld through one cycle
in time. The process is repeated until steady state convergence or steady state oscillation is
achieved.
A computer code has been developed to solve uncon�ned �ow past a two-dimensional body

of arbitrary geometry at angle of incidence. The numerical simulations were performed on a
HP9000, 512MB RAM, 8GB HDD, OASIS HP-UX, 400MHz Dual Processor Server. For
�ow past square cylinder at Re=200, at �=0◦ with 160× 120 grid, one time step calculation
after stabilization of periodicity is 40 s. On increase of the angle of incidence the computing
time increases to a peak value of 65 s at �=30◦. At �=45◦ it decreases to 53 s.

11. RESULTS AND DISCUSSION

In the present investigation initially �ow past square cylinder at Re=40, 100, 200 and 500 for
�=0◦ has been computed. Subsequently, �ow past square cylinder at Re=100 and 200 for
�=5◦–45◦ has been computed. The overall characteristics like the lift and drag coe�cients
(CL and CD) and Strouhal number (St) are used for the validation of the code. The overall lift
and drag coe�cients are obtained from the contributions of body surface pressure and shear
stress. These overall forces acting on the body can be split into two components: normal
force component (Fn) and axial force component (Fa). These individual components can be
obtained, by taking the contribution of pressure and viscous e�ects as shown by Braza et
al. [26].
The projected width of the body facing the �ow can be given as

w=B× (sin �+ cos �) (20)

The lift and the drag coe�cients are then calculated based on the projected width of the
body in order to compare the computed values of the force coe�cients with those of
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Table I. Grid independence test.

Grid size Strouhal number Average drag coe�cient

200× 160 (Grid 1) 0.127 1.56
160× 120 (Grid 2) 0.1243 1.533
100× 80 (Grid 3) 0.11 1.467

Figure 4. (a) The drag coe�cient characteristics for the square cylinder at Re=100 and �=0◦; and
(b) the lift coe�cient characteristics for the square cylinder at Re=100 and �=0◦.

Sohankar et al. [21], where the above procedure has been adopted.

L = Fn × cos �− Fa × sin � (21a)

D = Fn × sin �+ Fa × cos � (21b)

CL=
L

0:5�∞ × (u2∞ + v2∞)×w
=

L
0:5�∞ × (u2∞ + v2∞)×B× (sin �+ cos �) (21c)

CD=
D

0:5�∞ × (u2∞ + v2∞)×w
=

D
0:5�∞ × (u2∞ + v2∞)×B× (sin �+ cos �) (21d)

The present computations have been carried out using a 160× 120 O-grid. The size of the
grid was decided based on a grid independence study carried out on three di�erent grids,
namely, 200× 160 (grid 1), 160× 120 (grid 2) and 100× 80 (grid 3) for �ow past square
cylinder at Re=200 and �=0◦. It was found that the maximum di�erence between the drag
coe�cient and Strouhal number calculated using grid 1 and grid 2 is of the order of 2%,
whereas that between grid 2 and grid 3 is 4%. Therefore, grid 2 has been chosen for the �ow
calculations. Table I gives the details of the grid independence test.
The time-dependent drag and lift coe�cient characteristics for the square cylinder at

Re=100 and �=0◦ are shown in Figures 4(a) and (b), respectively. After initial �uctua-
tions, the characteristics attain a steady state oscillation after a large value of non-dimensional
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Figure 5. Variation of time-averaged drag coe�cient as a function of Reynolds number for
�ow past square cylinder at �=0◦.

time t, typically, t ¿ 140, implying unsteady �ow. The non-dimensional time ‘t’ is obtained
by dividing the dimensional time by a factor (B=U∞).
The average value of CD (CDav ) obtained from the present solver and the results of Davis

and Moore [27], Franke et al. [28], Arnal et al. [29] and Li and Humphrey [30] as a function
of Re are shown in Figure 5. The results of the present solver compares well with the results
available from literature.
Figure 6 shows the time development of separated �ow past square cylinder at �=45◦,

Re=100. At all the time levels the �ow separates from the upper corner of the front face
and lower corner of the rear face of the cylinder as seen from the streamlines shown in
Figures 6(a)–(d). In the wake of the cylinder, the �ow characteristics change signi�cantly
with change in time. At t=10:01, a small, symmetric wake is formed behind the cylinder
indicating a steady �ow behind it. With increase in time the wake grows in length as seen
at t=25:02. Subsequently, the symmetric nature of the wake gets gradually distorted and an
asymmetry sets in as seen at t=40:01. This phenomenon becomes more signi�cant at higher
time levels, and �nally the alternate vortex shedding phenomenon sets in as seen at t=60:05
leading to the formation of von Karman vortex street.
Figure 7 shows the vorticity and pressure contours for �=45◦, Re=100, t=93:0. The

shed vortices follow the path of the free stream. The pressure plots indicate the presence of
low-pressure zones behind the cylinder.
The time-dependent surface pressure distribution on the square cylinder for �=10◦ at

Re=100 is shown in Figure 8. The pressure coe�cient at the front-stagnation point is nearly
1.0, which is as expected. Due to the non-zero �, the stagnation point shifts towards S=B=1:0,
which is the lower corner of the front face of the cylinder. S=B is the non-dimensional distance
along the body surface measured in the anticlockwise direction by starting from the top corner
of the front face. It has been observed that unsteadiness in the body surface pressure increases
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Figure 6. Time development of separated �ow past square cylinder at �=45◦, Re=100:
(a) t=10:01; (b) t=25:02; (c) t=40:01; and (d) t=60:05.

Figure 7. Vorticity contours and pressure contours for �=45◦, Re=100, t=93:0.

with increase in �. At the front corners where the �ow separates, the body surface pressure
(CP) drops signi�cantly to a negative value and remains negative throughout the separated
region.
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Figure 8. The time variation of surface pressure distribution for �=10◦, Re=100.

Figure 9. Comparison of time-averaged pressure coe�cient along the �ow direction between the present
solver and results of Sohankar et al. [21] for �=0◦, Re=200.

Comparison of the time-averaged coe�cient of pressure along the �ow direction between
the present solver and results of Sohankar et al. [21] for Re=200 is shown in Figure 9.
Reasonably good agreement has been obtained. The pressure in the region ahead of the
cylinder is steady and gradually increases to a value of 1.0 at the front stagnation region. The
maximum negative pressure in the wake region is formed just behind the cylinder. At large
distances downstream, the pressure seems to be recovering gradually to free-stream pressure.
It is to be noted that the origin of the coordinate system is �xed at the centre of the square
cylinder. The length of a side of square cylinder, B, is taken as unity. Therefore, the rear face
of the cylinder corresponds to x=0:5.
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Figure 10. Variation of time-averaged drag coe�cient as a function of angle of incidence.

Figure 11. Variation of time-averaged lift coe�cient as a function of angle of incidence.

Figure 10 shows the variation of time-averaged drag coe�cient as a function of angle of
incidence for Re=100 and Re=200. It is observed that the average drag decreases from
�=0 to 5◦. Subsequently, the average drag coe�cient increases monotonically up to �=45◦.
Fairly close agreement has been obtained with the results of Sohankar et al. [21] for both
the Reynolds numbers. Figure 11 shows the variation of time-averaged lift coe�cient as a
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Figure 12. Variation of Strouhal number as a function of angle of incidence.

function of angle of incidence. The lift coe�cient is close to zero at Re=100 over the entire
range of angles of incidence. A decrease in average lift coe�cient is observed for Re=200
from �=0 to 5◦ with a subsequent increase. Fairly close agreement is obtained with the
results of Sohankar et al. [21] for Re=100. For most of the test cases for varying angle
of incidence and Reynolds number the lift due to pressure was negative (acting downwards)
while the lift due to friction was positive (acting upwards) over the square cylinder. At the
lower Reynolds number of 100 the frictional lift was greater than the pressure lift, whereas
the pressure lift increased with Reynolds number and at a higher Reynolds number of 200
the e�ect of the pressure lift dominated a wide range of angles of incidence. The present
scheme has predicted higher values of pressure lift than frictional lift as compared to Sohankar
et al. [21] at Re=200, which may be the reason for this discrepancy. Figure 12 shows the
variation of Strouhal number as a function of angle of incidence. A gradual increase of
Strouhal number with increase in angle of incidence is observed. Also, the Strouhal number
at a particular angle of incidence is higher for higher Reynolds number. Fairly good conformity
is obtained with the results of Sohankar et al. [21] for both the Reynolds numbers.

12. CONCLUSIONS

In the present investigation an explicit two-dimensional incompressible �nite volume collo-
cated grid-based Navier–Stokes solver has been developed based on a newly proposed ‘con-
sistent �ux reconstruction’ scheme. The solver is capable of solving uncon�ned �ow past any
arbitrary two-dimensional body geometry. A structured curvilinear body-�tted O-grid has been
used in the solver, which has been obtained using Laplace equation. In the newly proposed
�ux reconstruction scheme cell face centre velocities are calculated by solving the momentum
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equations at each cell face. The scheme is found to produce reasonably satisfactory results for
uncon�ned �ow past square cylinder at zero and non-zero angles of incidence over a range
of low and moderate Reynolds numbers when compared with results available from literature.
The method can be easily extended to three-dimensional �ows.
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